top of page

Para tener éxito en algebra, debe entender como sumar, restar, multiplicar y dividir números Reales.

Dos números, en la recta numérica, que están a la misma distancia del cero pero en direcciones opuestas se denominan:



Inversos aditivos, opuestos o simétricos uno del otro. Por ejemplo.

3 es el inverso aditivo de -3, y -3 es el inverso aditivo de 3

El numero 0 (cero) es su propio inverso aditivo.

La suma de un número y su inverso aditivo es 0 (cero).



Inverso aditivo



Para cualquier número real de a, su inverso aditivo es –a.

Considere el número -4. Su inverso aditivo es -(-4). Como sabemos que este número debe ser positivo, esto implica que -(-4) = 4. Éste es un ejemplo de la propiedad del doble negativo.



Propiedad del doble negativo



Para cualquier número real a, -(-a) = a

Por la propiedad del doble negativo, -(-6.9) = 6.9

Valor absoluto



El valor de cualquier número distinto del cero siempre será un nuero positivo, y el valor absoluto de 0 es 0.

 

El valor absoluto de un número puede determinarse por medio de la definición. Por ejemplo.









 

 

 

Operaciones:



1. Sumar números reales



Para sumar dos números con el mismo signo (ambos positivos o ambos negativos)

Sume sus valores absolutos y coloque el mismo signo común antes de la suma.

La suma de dos números positivos será un número positivo, y la suma de dos números negativos será un número negativo.

Ejemplo.

-5 + (-9)

Solución:

  • |-5| = 5 y |-9| = 9
  • 5 + 9 = 14
  • -14

Como ambos números que se suman son negativos, la suma será negativa.


 

Para sumar dos números con signos diferentes (uno positivo y el otro negativo)

Reste el valor absoluto menor del valor absoluto mayor. La respuesta tiene el signo del número con el valor absoluto más grande.

La suma de un número positivo y un número negativo puede ser positiva, negativa o cero, el signo de la respuesta será el mismo signo que el numero con mayor valor absoluto.

Ejemplo.

3 + (-8)

Como los números que se suman son de signos opuestos, restamos el valor absoluto más pequeño del valor absoluto mayor. Primero tomamos cada valor absoluto.

Ahora determinamos la diferencia, 8 – 3 = 5. El número -8 tiene un valor absoluto mayor que el número 3, por lo que la suma es negativa.

3 + (-8) = -5



2. Restar números reales



Todo problema de sustracción puede expresarse como un problema de suma por medio de la regla siguiente.

a – b = a + (-b)

Para restar b de a, sume el opuesto (o inverso aditivo de b a a

Ejemplo.

5 - 8 significa 5 – (+8). Para restar 5 – 8, sume el opuesto de +8, que es -7, a 5.

5 – 8 = 5 + (-8) = -3



3. Multiplicar números reales

Para multiplicar dos números con signos iguales, ambos positivos o ambos negativos, multiplique sus valores absolutos. La respuesta es positiva.

Para multiplicar dos números con signos diferentes, uno positivo y el otro negativo, multiplique sus valores absolutos. La respuesta es negativa.

Ejemplo

Cuando multiplicamos más de dos números, el producto será negativo cuando exista un número impar de números negativos. El producto será positivo cuando exista un número par de números negativos.

Propiedad del cero en la multiplicación

Para cualquier numero a,



4. Dividir números reales



Para dividir dos números con signos iguales, ambos positivos o ambos negativos, divida sus valores absolutos. La respuesta es positiva.

Para dividir dos números con signos diferentes, uno positivo y el otro negativo, divida sus valores absolutos. La respuesta es negativa.

Ejemplos.

Cuando el denominador de una fracción es un numero negativo, por lo común reescribimos la fracción con un denominador positivo. Para hacerlo, usamos el hecho siguiente.

Propiedades y Operaciones en los Reales

© 2013 by Estudiantes del SJV All rights reserved.

bottom of page